
Table of Contents
1. Introduction to FitVT...1
2. What is in the FitVT server image?..3

The Village Telco Server package is composed of four main components:.......3
The Simple Unified Dashboard (SPUD) monitoring is a wireless mesh network
visualisation tool for BATMAN mesh networks and its users.............................3

What is the default network setup?...4
3. Installing all dependencies...5
4. Building and installing village-telco package...6
5. Rebuilding the village telco package...7
6. Installing SPUD...8
Installing Coova/Chilli for the Village Telco...10

STEP 1: Create database for FreeRADIUS ..11
STEP 2: Prepare FreeRADIUS to use MySQL as backend.....................................12
STEP 3: Create a Radius test user to check radius...12
STEP 4: Active the SQL Backend..12
STEP 5: Add Chilli user to work as Radius client ...13
STEP 6: Download and build Coova-Chilli ..14
STEP 7: Configure Coova-Chilli ..15
STEP 8: Configure Apache Captive Portal...16
STEP 9: Installing haserl...17
STEP 10: Configure routing and NATing ...18

1. Introduction to FitVT

After a few months working in our labs we want to introduce you to the FitVT, our
low cost/low power server for the Village Telco based on FitPC2i low power
computer.

After testing different low power solutions based on commodity laptops, we
discovered the FitPC1. The Fitpc2i comes with two Gigabit network interfaces and
the CompuLab SBC-FITPC2 series board that uses a fanless Atom Z550 32bits
CPU.

In most of the scenarios the VT server will sit behind a village telco super-node
and the Internet. Although we have tested commodity laptops using a USB-
Ethernet converter as second interface, we have seen very bad performance in
the data transfers of some USB dongles (USB 1.1). So if you plan to provide also
Internet access from the mesh nodes, consider a solution with two built-in network
interfaces.

1 http://www.fit-pc.com/web/fit-pc/fit-pc2i-specifications/

Installing Ubuntu 10.04 in the fitpc2i2 was as easy as installing Ubuntu in any
other computer. Use a bootable USB image or attach an external USB-CD Drive.
Just make sure that you choose a 32 bits image as the Atom CPU runs 32 bits.

In our laboratory we have tested the Fitpc2i with a Intel(R) Atom(TM) CPU Z550@
2.00GHz3 and 2 GB of RAM. The unit runs at 35-40 C when idle so make sure that
you do not forget it under a pile of books as I did. There are at least two revisions
of this hardware but the process of installation should be the same.

CompuLab, the company behind the FiTVT provides support for Linux Mint as the
hardware seems to be targeted to those that want to run a nice multimedia
station at home (i.e. stream audio/video obtained from good friends to a
television). We warned that the unit does not come with VGA output and has a DVI
Digital output up to 1920 x 1200 through HDMI connector instead, so you will
need a LCD/TV screen with HDMI or DVI input to connect the FitPC.

There are two useful accessories that you can consider, an analog VGA converter
is powered from the DVI port and requires no external power source and the
external heat-sink.

The main glitch in the installation process is that the stock kernel that ships with
Ubuntu 10.04 has buggy R8169 network driver that has broken auto-negotation.
In my case, only one of the interfaces was able to negotiate the speed, while the
other interface required the ethtool to force the speed to 10 Mbps. Fixing the
speed of the second card to 10 Mbps was the only solution so you can upgrade
your kernel.

Once you upgrade the kernel from version 2.6.32-33 to 2.6.32-38 you will discover
that the DADHI drivers that are used Asterisk are now broken and you will have to
rebuild them. The DADHI drivers depend on kernel version (i.e. wrong symbols). In
a nutshell, in order to get the network cards to work you will have to (1) upgrade
your kernel and (2) rebuild DADHI Asterisk drivers.

The default linux kernel uses the PAE extensions that allows to run 32bits with lots
of RAM.

2 http://www.fit-pc.com/wiki/index.php/Fit-PC2i_Revisions
3 http://www.cpu-world.com/CPUs/Atom/Intel-Atom%20Z550%20AC80566UE041DW.html

2. What is in the FitVT server image?

To facilitate the work to other developers we have created a bootable ISO that you
can install directly in the server. The bootable ISO is based on remastersys4

1) The Village Telco Server Package (http://dev.villagatelco.org)

2) The Simple Unified Dashboard (SPUD) monitoring
(http://spud.villagatelco.org)

3) Coova Captive portal

The Village Telco Server package is composed of four main components:

• asterisk realtime : Based on asterisk 1.6 and mysql realtime support.
• a2billing village telco : Based on a2billing version 1.7.0, a2biling

incorporates our Village Telco simplified GUI, a SOAP webservice and a few
extra patches to work in Ubuntu 10.04. A2billing is written in PHP+smarty
and interfaces with Asterisk using AGI and AMI.

• a2billing installation wizard : The wizard interfaces with the SOAP
webservice and performs a full installation of a2billing for Village Telco in 5
steps. The wizard is written in PHP+Cake MVC and interfaces with a2billing
with SOAP.

• a3glue : The a3glue is a webservice that follows the REST architecture and
delivers JSON provisioning and monitoring information to other components
of the Village Telco as the Afrimesh monitoring panel. A3glue is written in
PHP and interfaces with Asterisk using Asterisk AJAM (MXML).

The Simple Unified Dashboard (SPUD) monitoring is a wireless mesh network
visualisation tool for BATMAN mesh networks and its users.

SPUD is a PHP based dashboard that communicates with the BATMAN visualization
server and displays real time wireless link status. The software is written in
CakePHP (a PHP-based MVC framework) and uses Google Maps API 1.3 for
visualization.

SPUD is designed to be as simple as possible to use, and to enable teams, that
have installed large amount of mesh nodes, to visualize their networks quickly.

Some of the core features of SPUD are:

• Client management: Bulk import of clients from CSV file, Edit client

4 http://www.geekconnection.org/remastersys/

position with Google Maps, Tracking of new clients
• Link monitoring: Easy overview of active wireless links, Mesh quality in

each direction of a wireless link
• Customization: Colours and threshold values for link quality

And the Coova captive portal that integrated an universal access method (UAM)
for wireless Internet access.

What is the default network setup?
Our default network setup uses B.A.T.M.A.N. in layer3 and looks as follows:

• The mesh potatoes use the IP network 10.130.1.0/24 by default. One of the
mesh potatoes is the gateway to the wired network (Super Node). In our
laboratory setup with have configured the super node (the wired mesh
potato) with the IP address 10.130.1.2 (ath0/wirelesss) / 192.168.130.2
(eth0 /wired).

• Our super-node is installed in a Ubiquity NS2 with modified openwrt
firmware that includes BATMAN and the legacy JSON output from the VIS
server. Firmware images are available here:

http://dev.villagetelco.org/svn/villagetelco/ubnt2/

• The Village Telco Server runs the IP 192.168.130.1 (eth1, ETH2) and the
upstream interface runs DHCP (eth0, ETH1).

Two major configuration steps are needed:

• Advertising the server network attached to the wired interface of the super
node: you need to advertise the 192.168.130.0/24 network inside of the
mesh via the super node. In the super node edit the configuration files

/etc/config/batmand
/etc/config/network

root@OpenWrt:/etc/config# cat batmand
config batmand general
 option interface ath0
 option announce 192.168.130.0/24
 option gateway_class
 option originator_interval
 option preferred_gateway
 option routing_class
 option visualisation_srv
 option policy_routing_script

root@OpenWrt:/etc/config# cat network

config 'interface' 'loopback'
 option 'ifname' 'lo'
 option 'proto' 'static'

 option 'ipaddr' '127.0.0.1'
 option 'netmask' '255.0.0.0'

config 'interface' 'lan'
 option 'ifname' 'eth0'
 option 'proto' 'static'
 option 'netmask' '255.255.255.0'
 option 'ipaddr' '192.168.130.2'
 option 'dns' '192.168.130.1'
 option 'gateway' '192.168.130.1'

config 'interface' 'wifi0'
 option 'ifname' 'ath0'
 option 'proto' 'static'
 option 'netmask' '255.255.255.0'
 option 'ipaddr' '10.130.1.2'

• In the server we need to add a route back to the mesh network and
MASQUERADE all outgoing connections to the Internet.

3. Installing all dependencies
The village telco server bundle runs a2billing, asterisk, spud and coova. The
packages have dependencies on apache, mysql, php, curl, espeak, soap,
freeradius, etc. We have compiled all package dependencies in this list:

apt-get install libapache2-mod-php5 php5 php5-common php5-cli \
php5-mysql mysql-server apache2 php5-gd php5-curl php5-mcrypt php-soap \
php-pear espeak asterisk subversion dpkg-dev linux-headers-2.6.32-38 \
linux-headers-2.6.32-38-generic-pae linux-image-2.6.32-38-generic-pae \
freeradius freeradius-mysql coova-chilli libapache2-mod-auth-mysql libssl-dev ssl-
cert gcc

IMPORTANT! Remember your mysql admin/root password as you will need it at a
later stage.

4. Building and installing village-telco package

Detailed information of how to build the village-telco debian package is available
here:

http://dev.villagetelco.org/trac

As discussed in the introduction section you will need to update your kernel to
ensure that the drivers for the Realtek gigabit cards are updated.

apt-get dist-upgrade
apt-get install linux-headers-generic-pae

if you see error messages like the following it means that you need to rebuild your
asterisk DAHDI drivers. DAHDI (former Zaptel) is the open source device interface
technology used to control Digium and other legacy telephony interface. Although
you do not need the drivers to run the basic Asterisk services, unfortunately
asterisk package for Ubuntu has built depedencies on the dadhi package.

Unloading DAHDI hardware modules: done
Loading DAHDI hardware modules:
FATAL: Error inserting dahdi (/lib/modules/2.6.32-38-generic-
pae/updates/dkms/dahdi.ko): Unknown symbol in module, or unknown parameter (see
dmesg)
 dahdi: error dahdi_dummy: error dahdi_transcode: error
Error: missing /dev/dahdi!
invoke-rc.d: initscript dahdi, action "start" failed.

Dahdi drivers not found!

After reboot, rebuild DADHI issuing the command:

/var/lib/dpkg/info/dahdi-dkms.postinst configure

5. Rebuilding the village telco package

The following process checks out the code from the subversion repository and
builds a .deb package. The build process checks out the trunk from subversion
and creates a folder with the name villagetelco-server-0.7, cleanups the .svn
folders and runs dpkg-deb to build the package

cd /usr/local/src; svn co http://dev.villagetelco.org/svn/villagetelco
villagetelco.

cd /usr/local/src/villagetelco/server; ./build.sh

___ Copy trunk to package folder s
___ Delete .svn folder
___ Building package

<snip>

dpkg-deb: building package `villagetelco-server' in `../villagetelco-server_0.7-
1_all.deb'.
 dpkg-genchanges >../villagetelco-server_0.7-1_i386.changes
dpkg-genchanges: including full source code in upload
dpkg-buildpackage: full upload; Debian-native package (full source is included)
___ Removing package folder
___ Archiving package

Once you have created the .deb package you can install it as follows:

cd /usr/local/src/villagetelco/server/debs; dpkg -i villagetelco-server_0.7-
1_all.deb

===
 VTE Server Installation completed!

Installation:
/usr/local/villagetelco-server

Backup files:
/etc/asterisk/*.1329229071
/usr/share/asterisk/agi-bin.1329229071

 VTE Server Configuration

Start by running the configuration wizard

http://localhost/wizard
user: root pass: changepassword

Log into A2Billing Simplified Management
http://localhost/a2billing
===

6. Installing SPUD

The easier way to get SPUD online is to make a symbolic link to the SVN checkout

cd /usr/local/villagetelco-server/wwwroot; ln -s
/usr/local/src/villagetelco/spud/trunk/ spud

• Create a new database
mysqladmin -u root -p create spud

• Edit SPUD database settings
vi /usr/local/src/villagetelco/spud/trunk/spud/app/config/database.php

 var $default = array(
 'driver' => 'mysql',
 'persistent' => false,
 'host' => 'localhost',
 'login' => 'root',
 'password' => '',
 'database' => 'spud',
 'prefix' => '',
);

• Create database schema
cd /usr/local/src/villagetelco/spud/trunk/spud/app/install
mysql -u root spud -p < spud_db_schema.sql

• Change file permissions

cd /usr/local/src/villagetelco/spud/trunk/spud/
chown -Rf www-data.www-data tmp/

• Enable Apache rewrite module

cd /etc/apache2
a2enmod rewrite

• Edit Apache2 000-default file

vi /etc/apache2/sites-enabled/villagetelco

 Options Indexes FollowSymLinks MultiViews
 AllowOverride All

• Add the Alias section

vi /etc/apache2/sites-enabled/villagetelco
Alias /spud /usr/local/villagetelco-server/wwwroot/spud

• Change default port number for a2billing and SPUD

As we are going to run a2billing and SPUD in coexiting with a Internet captive
portal (Coova/Chilli). We need to run the web services in another port that is not
80.

You will need to:
Change the first line of the Apache2 site to run in port 8888

vi /etc/apache2/sites-enabled/villagetelco
<VirtualHost *:8888>

• Listen in ports 8888 and 443

Edit your /etc/apache2/ports.conf to look like:

NameVirtualHost *:8888
#Listen 80
Listen 8888
Listen 443

• Restart Apache
/etc/init.d/apache2 restart

• Configure VIS server

Edit the configuration file

vi /var/www/spud/app/config/config.php

In this configuration file you can:
a) Set the IP address/domain name of your FitVT server.
 Default value is 192.168.130.1
b) Set the IP address of your VIS server.
 The default settings will point to the Bo Kaap VIS server

 Change that for the IP of your super-node 192.168.130.2 or 10.130.1.2
c) Configure the vis mode. SPUD supports two VIS modes ('mode' =>

'batman') and ('mode' => 'batman-adv') depending if you run your mesh
protocol in L3 or L2

d) Configure the vis_version. If you run a L3 mesh network you need also to
define the vis_version variable. The legacy value supports the broken JSON
output of some old I mplementations. Recent L3 VIS servers should be set up

as vis_version: trunk

 $config['SPUD']= array(
 'host' => '192.168.130.1:8888'
);

 $config['VIS']= array(
 'host' => '41.223.35.110',
 'port' => '2015',
 'timeout' => '30'
 'vis_version' => 'legacy',
 'mode' => 'batman',
);

• Configure VIS server

crontab -e

*/5 * * * * root /usr/bin/wget -O - -q -t 1
http://localhost:8888/spud/nodes/update >/dev/null 2>&1

• Navigate to SPUD:
http://192.168.130.1:8888/spud

Installing Coova/Chilli for the Village Telco

CoovaChilli is an open-source software access controller/captive portal, based on
the popular ChilliSpot.

CoovaChilli takes control of the internal interface (eth1/ETH2) using a raw
promiscuous socket and provides DHCP, ARP, and HTTP Hijacking on the outbound
interface (eth0/ETH1).

A client connecting to the outbound interface is limited to a "walled garden" until
authorized. The client is only able to resolve DNS and web browser web sites
specifically added to the walled garden.

Authentication takes place using a "Universal Access Method" (UAM). The UAM
method uses a captive portal that initiates authentication. When a non-
authenticated client tries to reach a website on port 80, the request is intercepted
and redirected to the captive portal.

The connections are redirected to a perl-script called hotspotlogin.cgi that it is
served by the apache server over HTTPS.

The perl script hotspotlogin.cgi serves a page to the end-user with a username
and password field. These authentication data is forwarded to chilli (the access

controller) by means of web browser redirects. On the chilli side, authentication
requests are then forwarded to the FreeRADIUS server, which matches them with
information in it’s back-end. The FreeRADIUS back-end for the FitVT server is
mysql.

Once the credentials are sent, the user is then either rejected or authenticated by
FreeRADIUS, prompting hotspotlogin.cgi to present either a rejection message or a
page with a success message and a logout link to the user5.

Understanding how Coova Chilli works can be greatly simplified by having an
overview of the messages that are exchanged during an authentication process.

The data flow looks as follows

HTTPS → [1] → Apache Webserver → CGI → [2] → Chilli Controller → [3,4]
FreeRadius → [5] → Mysql

In each bi-directional exchange of data between the different components a
security mechanism is implemented:

• The end user and passwords [1] (user credentials) are protected via HTTPS
in the first step.

• A secret [2] (uamsecret) is used between the Apache CGI and Chilli
Controller (UAM).

• The Chilli Controller secures the connection to FreeRadius using another
secret [3] (radiussecret) and access the FreeRadius database using a radius
user account [4] (chillispot secret).

• Finally FreeRadius connects to Mysql using another secret [5] (mysqlsecret)

The following steps are needed to implemented the overall architecture.

STEP 1: Create database for FreeRADIUS
The database stores usernames and passwords (end user crendetials)

mysql -u root -p
mysql> CREATE DATABASE radius;
mysql> quit

mysql -u root -p radius < /etc/freeradius/sql/mysql/schema.sql
mysql -u root -p radius < /etc/freeradius/sql/mysql/nas.sql

mysql -u root -p

5 https://help.ubuntu.com/community/WifiDocs/CoovaChilli

mysql> GRANT ALL PRIVILEGES ON radius.* TO 'radius'@'localhost' IDENTIFIED BY
'mysqlsecret';
mysql> FLUSH PRIVILEGES;
mysql> quit

STEP 2: Prepare FreeRADIUS to use MySQL as backend

vi /etc/freeradius/sql.conf

server = "localhost"
login = "radius"
password = "mysqlsecret"

vi etc/freeradius/clients.conf
client localhost {

ipaddr = 127.0.0.1
secret = radiussecret
require_message_authenticator = no

}

STEP 3: Create a Radius test user to check radius.
Before activating the SQL backend, we test against an user in a text-file and we
run a radius session

vi /etc/freeradius/users

"John Doe" Cleartext-Password := "hello"
Reply-Message = "Hello, %{User-Name}"

root@fitvt:~# radtest "John Doe" hello 127.0.0.1 0 radiussecret
Sending Access-Request of id 238 to 127.0.0.1 port 1812

User-Name = "John Doe"
User-Password = "hello"
NAS-IP-Address = 127.0.1.1
NAS-Port = 0

rad_recv: Access-Reject packet from host 127.0.0.1 port 1812, id=238, length=20

STEP 4: Active the SQL Backend
Change every appearance of “file” for “sql” in the configuration file

vi /etc/freeradius/sites-available/default

if you want to use software packages like ezRADIUS or Dialup Admin you need to
enable logging to sql

vi /etc/freeradius/sql.conf

 readclients = yes

vi /etc/freeradius/sites-available/default

 $INCLUDE ${confdir}/sql.conf
authorize {
 preprocess
 chap
 suffix
 eap
 #files
 sql
}
authenticate {
 Auth-Type PAP {
 pap
 }
 Auth-Type CHAP {
 chap
 }
 eap
}
accounting {
 detail
 radutmp
 sql # change
}
session {
 sql # change
}

STEP 5: Add Chilli user to work as Radius client
Coova-chilli uses the username 'chillispot' with the password 'chillispot' for logging
into the radius by default. Add this user in the table radcheck.

echo "INSERT INTO radcheck (UserName, Attribute, Value) VALUES ('chillispot',
'Password', 'chillispot');" | mysql -u radius -p radius
Enter password:mysqlsecret

Test the radius access against the SQL backend.

radtest chillispot chillispot 127.0.0.1 0 radiussecret
Sending Access-Request of id 39 to 127.0.0.1 port 1812

User-Name = "chillispot"
User-Password = "chillispot"
NAS-IP-Address = 127.0.1.1
NAS-Port = 0

rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=39, length=20

STEP 6: Download and build Coova-Chilli

There are two ways to run Coova Chilli in our Village Telco setup:

b) L3 (Layer 3 /CC3): In this scenario our meshed clients can be behind a L3 super
node or router and have IP addresses from other IP networks that the one present
in the Captive portal's incoming interface. In a L3 setup Coova-Chilli does not run
a DHCP server and does not need to hijack ARP messages. Coova-Chilli in Layer 3
is suitable when B.A.T.M.A.N runs in L3 in the super node. If you are advertising
your gateway network via a supernode, it seems that you run the mesh network
in a different network that the gateway/server network.

a) L2 (Layer 2 /CC2): In this scenario our clients (the potatoes) need to be able to
be in the same link layer of the Coova-Chilli. Authentication in Layer 2, requires
the wireless clients to be in the same network segment that the Captive Portal as
authentication uses the IP and MAC address of the clients. ARP messages need to
be exchanged directly between the wireless clients and the access controller. This
means in practice that no router, NAT servers can be placed in the middle. In the
context of a B.A.T.M.A.N. Network, it implies that the protocol needs to run in L2
(Link Layer Routing) and not L3 (IP routing)

The following section covers how to download and install Coova Chilli in both
scenarios CC2 and CC3:

cd /usr/local/src;
wget http://dev.villagetelco.org/coova-chilli/coova-chilli_1.2.9_i386.deb

dpkg -i coova-chilli_1.2.9_i386.deb

STEP 7: Configure Coova-Chilli
This user is defined in the default chilli config file

cp /etc/chilli/defaults /etc/chilli/config

mkdir /var/www/hotspot
mkdir /var/www/hotspot/uam
mkdir /var/www/hotspot/images
mkdir /var/www/hotspot/cgi-bin

cd /var/www/hotspot/cgi-bin/ \
gunzip /usr/share/doc/coova-chilli/hotspotlogin.cgi.gz

chmod a+x /var/www/hotspot/cgi-bin/hotspotlogin.cgi

cp /etc/chilli/www/* /var/www/hotspot
cp /var/www/hotspot/coova.jpg /var/www/hotspot/images/

cd /var/www/hotspot/uam; wget http://ap.coova.org/uam/
cd /var/www/hotspot/uam; wget http://ap.coova.org/js/chilli.js

Our default config looks like this:

HS_DNS1=208.67.222.222
HS_DNS2=208.67.220.220
HS_NASID=nas01
HS_RADIUS=127.0.0.1
HS_RADIUS2=127.0.0.1
HS_UAMALLOW=10.130.1.0/24,192.168.1.99,192.168.130.0/24
HS_UAMALIASNAME=chilli
HS_UAMSERVER=$HS_UAMLISTEN
HS_UAMFORMAT=http://\$HS_UAMLISTEN:\$HS_UAMUIPORT/www/login.chi
HS_UAMHOMEPAGE=http://\$HS_UAMLISTEN:\$HS_UAMPORT/www/coova.html
HS_UAMSERVICE=https://192.168.130.1/cgi-bin/hotspotlogin.cgi
HS_MODE=hotspot
HS_TYPE=chillispot
HS_ADMUSR=chillispot
HS_ADMPWD=chillispot
HS_WWWDIR=/etc/chilli/www
HS_WWWBIN=/etc/chilli/wwwsh
HS_PROVIDER=Villagetelco
HS_PROVIDER_LINK=http://www.villagetelco.org/
#OPTIONS FOR L3 vs L2
HS_ANYIP=on
HS_LAYER3=on

edit login script

vi /var/www/hotspot/cgi-bin/hotspotlogin.cgi

Uncomment and change password

$uamsecret = "uamsecret";
$userpassword=1;

STEP 8: Configure Apache Captive Portal

We create a self-signed SSL certificate to “secure” the user credentials :-P

mkdir /etc/apache2/ssl

Hardcoding cert lifetime based on this patch: http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=293821#22

make-ssl-cert /usr/share/ssl-cert/ssleay.cnf /etc/apache2/ssl/apache.pem

• Find the hostname (hostname -f) and fill it up in the commonName file

Create the website configuration

vi /etc/apache2/sites-available/hotspot

NameVirtualHost 10.1.0.1:443
<VirtualHost 10.1.0.1:443>
 ServerAdmin webmaster@domain.org
 DocumentRoot "/var/www/hotspot"
 ServerName "10.1.0.1"
 <Directory "/var/www/hotspot/">
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>

 Alias "/dialupadmin/" "/usr/share/freeradius-dialupadmin/htdocs/"
 <Directory "/usr/share/freeradius-dialupadmin/htdocs/">
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=293821#22
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=293821#22

 ScriptAlias /cgi-bin/ /var/www/hotspot/cgi-bin/
 <Directory "/var/www/hotspot/cgi-bin/">
 AllowOverride None
 Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 </Directory>

 ErrorLog /var/log/apache2/hotspot-error.log

 LogLevel warn

 CustomLog /var/log/apache2/hotspot-access.log combined

 ServerSignature On
 SSLEngine on
 SSLCertificateFile /etc/apache2/ssl/apache.pem
</VirtualHost>

Enable SSL virtualhost

sudo a2ensite hotspot

/etc/init.d/apache2 reload

HTTPS should listen on port number 443. You should add the following line to
the /etc/apache2/ports.conf file:

vi /etc/apache2/ports.conf

Listen *:443
Listen *:80
#<IfModule mod_ssl.c>
Listen 443
#</IfModule>

STEP 9: Installing haserl

Haserl is a cgi scripting program for embedded environments .

wget http://dev.villagetelco.org/coova-chilli/haserl-0.9.29.tar.gz

tar -xvf haserl-0.8.0.tar.gz

cd haserl-0.8.0/

./configure
make
make install

Edit /etc/chilli/wwwsh file

haserl=$(which haserl 2>/dev/null)

with
haserl=/usr/local/bin/haserl

STEP 10: Configure routing and NATing

The script /etc/chilli/up.sh controls the behaviour of the firewall with Coova-Chilli
the following changes are needed for our setup:

1. Accept UDP traffic arriving to Asterisk in our box (UDP)

ipt_in -p tcp -m tcp --dport 8888 --dst 192.168.130.1 -j ACCEPT

2. Accept traffic arriving to SPUD (TCP #8888)

 ipt_in -p tcp -m tcp --dport 8888 --dst 192.168.130.1 -j ACCEPT

3. Route the mesh network for (L3) and NAT the upstream

force-add the final rule necessary to fix routing tables
iptables -I POSTROUTING -t nat -o $HS_WANIF -j MASQUERADE
route add -net 10.130.1.0 netmask 255.255.255.0 gw 192.168.130.2

